

DMID/NIAID/NIH Optimizing Positive "Hits" for Potency and Safety in Anti-Infective Drug Development Feb 7-8, 2007

Identification of inhibitors of Ebola virus using a subgenomic replication system.

Paul D. Olivo, M.D., Ph.D.

President & Chief Scientific Officer

Apath, LLC

Apath

- Apath is an early stage drug discovery company focused on antivirals
- Discovery platform is well suited to bioterrorism agents

Apath DD Strategy

- Screening platform based on subgenomic replication systems (replicons)
 - 10 viruses (4 biodefense pathogens)
- Focused on preclinical studies
 - Commercial collaborators and service contracts for chemistry, pharmacokinetic, and toxicology studies
 - Academic and government collaborators for MOA studies
- Seeking partners for clinical development

Viral hemorrhagic fever

- Arenaviruses
 - Argentine, Bolivian, Venezualan HF
 - Lassa fever
- Bunyaviruses
 - · Congo-Crimean, Rift Valley, Hantaan
- Flaviviruses
 - Yellow fever, Dengue
- Filoviruses
 - Ebola, Marburg

Filovirus Viral Hemorrhagic Fever

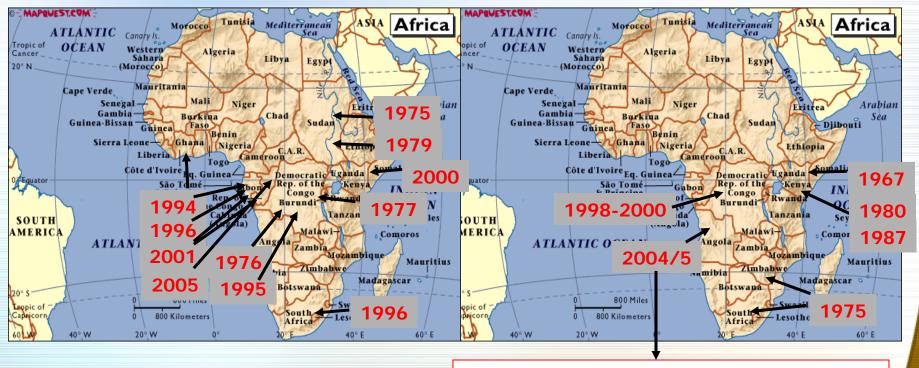
Ebola and Marburg viruses

• Ebola Subtypes: Zaire, Sudan, Ivory Coast, Gabon, Reston

Epidemiology

- Natural host is unknown (bats?)
- Transmission associated with contact with body fluids

Clinical Features


- Incubation period: 4-21 days
- Abrupt onset of nonspecific symptoms
- Impaired liver function
- Dysregulated coagulation/bleeding diathesis
- Severe morbidity/shock 6-9 days after onset
- High case-fatality rate (40-90%)
- No vaccine or effective antiviral therapy

Filovirus hemorrhagic fever

Ebola outbreaks

Marburg outbreaks

422 cases (356 deaths; >80% case-fatality)

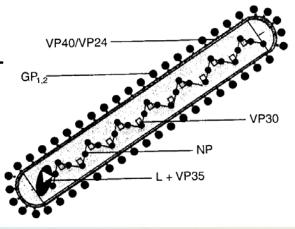
Ebola virus

- family: Filoviridae (filo (latin): 'threadlike')
- enveloped
- genome: negative-sense, single-stranded RNA, 19 kb

Viral Proteins:

L = polymerase

VP35 = polymerase cofactor

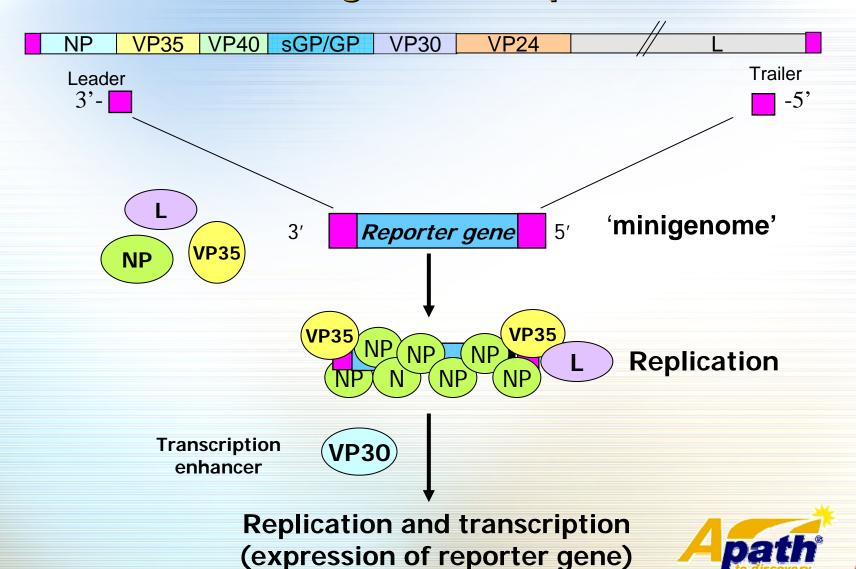

NP = nucleoprotein

VP30= transcription factor

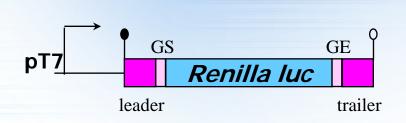
GP = glycoprotein

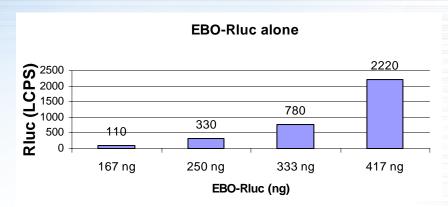
VP40 = matrix protein

VP24 = matrix protein

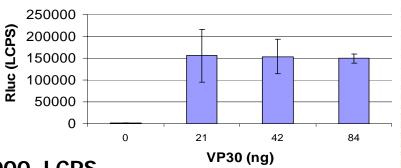


EM image Frederick A. Murphy, CDC




EBOV subgenomic replication

Reporter gene expression is dependent on viral proteins


Minigenome with reporter gene

T7 pol expression vectors for:

- NP
- VP35
- •
- VP30

Signal: ca 150000 LCPS Noise: ca 100 LCPS

S/N: 1500

EBO-Rluc: 167 ng NP: 208 ng VP35: 208 ng L: 208 ng

Rationale for minigenome-based screen

- Cell-based assay that can be carried out at BSL-2
- Focus on viral RNA replication, transcription and translation of viral proteins
- Enables the identification of novel targets (viral and host)

EBO-Rluc screening setup

Transfect EBO-Rluc minigenome NP, VP35, L, VP30

Trypsinize and freeze in aliquots

Thaw and plate into 96 well plate

4 hours

Add compounds (1% DMSO)

24 hours

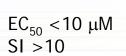
PBS wash/20 ul lysis buffer Measure luciferase

Screening protocol

Primary screen (Minigenome)

 $25 \mu M, n=1$

 \geq 80% inhibition \blacksquare


EC50/CC50 (Minigenome)

 $EC_{50} < 10 \mu M$ SI > 10

EC50/CC50 (EBO virus)

5 concentrations n=4

(Antiviral hits)

(Lead candidates)

Ebola viral assays

USMARIID

Cooperative research and development agreement (CRADA)

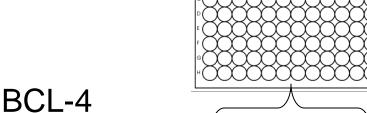
Cell culture assays:

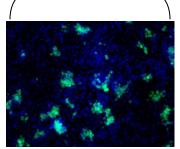
- EBO-GFP infection assay
- CPE inhibition assay
- Plaque reduction assay

Animal models:

- Mouse model: BALB/c
 - Mouse-adapted strain of Zaire strain
- Monkey model: Rhesus, cynomolgus macaques
 - Zaire/95 strain

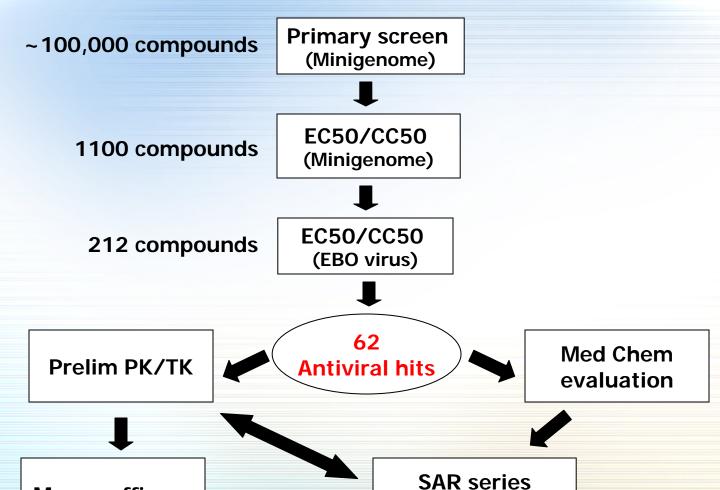
Ebola-GFP recombinant virus


NP GFP VP35 VP40 GP VP30 VP24


- Zaire strain of Ebola virus
- High level of GFP expression
- not cytolytic

Ebola-GFP infection assay:

- Vero E6 cells in 96 plates
- Infection (MOI = 0.1)
- IFN a control (IC90)
- 48h incubation
- Formalin fixation
- Wash out formalin with PBS and soak in PBS (1h)
- GFP detection: Spectrofluorometer (bottom read)
- Signal to noise: S/N = >12
- Cytotoxicity: crystal violet staining (CC50 @ Apath by ATP-content)


Towner et al. Virology: 332(1):20-7; Feb. 5, 2005

Lead optimization

Mouse efficacy

Nine classes of hits

Apath Copyright 2006

Rationale for 20 sulfonamide SAR series

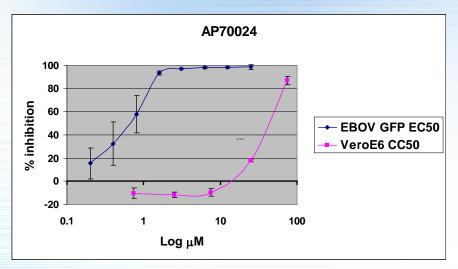
- Several thousand 2^o sulfonamides in library (includes Tripos LeadQuest™) which allowed for a preliminary SAR analysis
- Tripos has proprietary high throughput synthetic methods for 2º sulfonamides
- Leverage our efforts with the RSV SAR optimization program by making series in parallel to maximize resources (chemist time/chemical reagents)

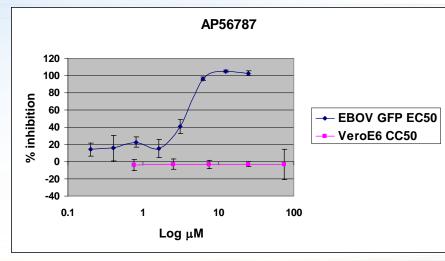
Secondary Sulfonamides Lead Candidates

- 273 with EC50/CC50 data
- 64 minigenome hits
- 21 Lead candidates

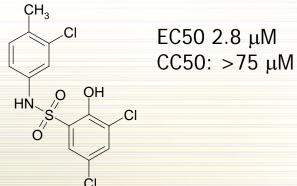
SAR information from HTS:

Heteroatom


Active structures feature:


- aryl amines substituted with e- withdrawing and hydrophobic substituents
- aryl sulfonic acids heteroatom substitutions 5 bonds from the sulfur

Chemistry – amenable to SAR optimization



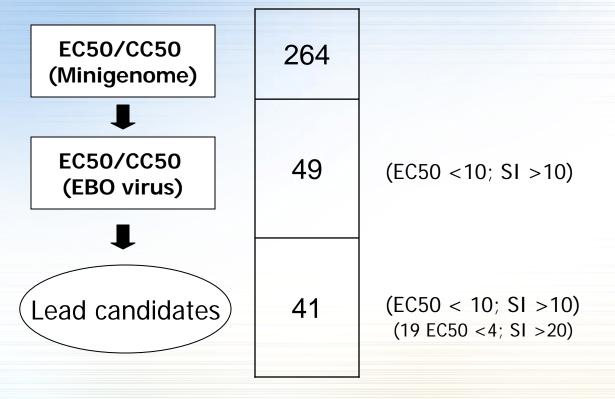
2º Sulfonamide lead candidates

EC50 0.53 μM CC50: 40 μM H₃C CH₃ Br

Strategies for Design of SAR Series

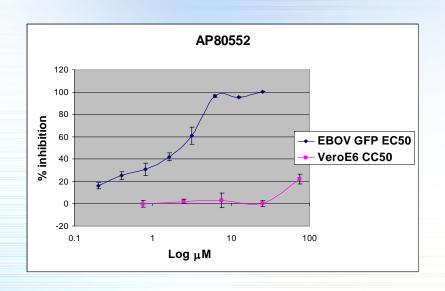
Strategy 1

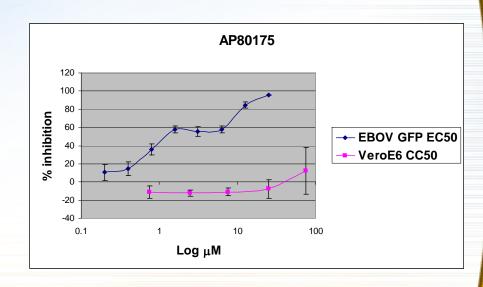
- Perform sidechain analysis of lead candidates and structurally similar compounds (via SAR-Navigator analysis from TRIPOS)
- Combine R1 and R2 groups from lead candidates


Strategy 2

- Create topomeric conformer (topCoMFA, Tripos) model of lead candidates and their neighbors
- Use topCoMFA model and topomer searching to select reagents for generation potential products

Combined both approaches for the 1st round SAR series (264 compounds)


1st round 20 sulfonamide series

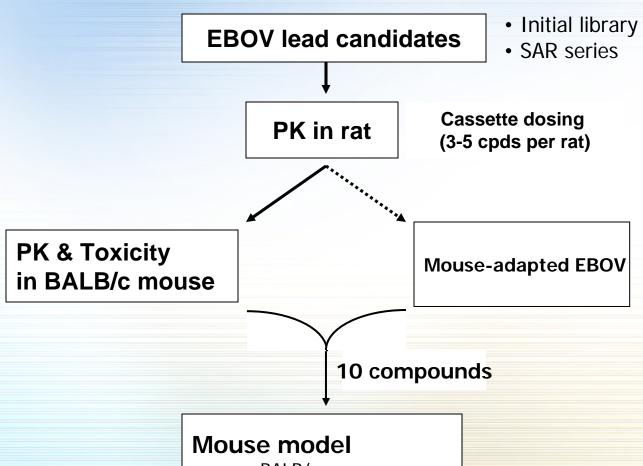


- Enrichment in the number of compounds and quality of viral hits (higher SI) when comparing to HTS results
- No improvement of potency in viral GFP EBOV assay!

Novel 2º Sulfonamide lead candidates

EC50 3.4 μ M CC50: >75 μ M

EC50 1.8 μ M CC50: >75 μ M


Ebola murine model

- BALB/c mice: 5-16 weeks (female)
- Mouse-adapted virus (Zaire):
 - LD50 = 0.03 pfu (= 1 virion by EM)
 - Death by day 7-8
- Route of infection: IP
- Readout:
 - Weight
 - Survival
 - Viral load (serum, 3-4 log reduction is significant)
- Pathology
 - Histopathology in multiple organs (liver, spleen, LN, Adrenal glands)
 - High titers of virus in liver and spleen
 - EBOV Ag in kidney, lung, GI tract
- Sensitive to drugs that induce type I IFN response
- Good for testing inhibitors of replication.

Bray et al. J Infect Dis. 1999 Feb;179 Suppl 1:S248-58.
Bray et al. J Infect Dis 1998 Nov;178(5):1553.

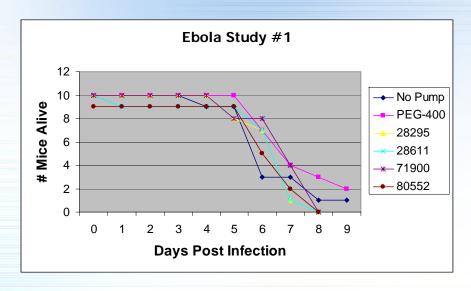
Selection of compounds for mouse efficacy study

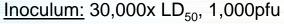
- BALB/c
- Mouse-adapted EBOV

Compounds selected for EBOV efficacy study

Single IV and IP dosed in Female Balb C Mice at 5 mpk

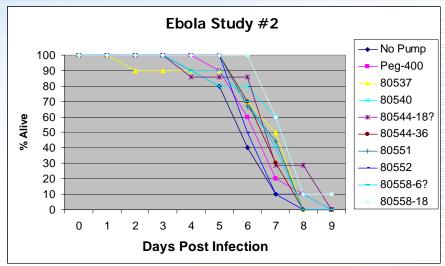
AP#	Class	Cmax (ng/ml)	Clearance In mice (ml/min/kg)	Volume of Distribution Vss (L/kg)	Halflife (hr)	IP Bioavailability
71900	2 nd SA	9620 ng/ml	37.78	0.71 L/kg	2.89 hr	24%
80552	2 nd SA Novel	10588 ng/ml	20.63	0.48 L/kg	1.35 hr	83%
28295	Orphan	4443 ng/ml	14.98	1.88 L/kg	3.17 hr	20%
28611	ThPmON	6329 ng/ml	13.32	1.85 L/kg	8.81 hr	72%




EBOV mouse study: Protocol

- BALB/c Mice:
 - female, 10-12 weeks; weight: 23-25g
- **Infection: 1000 pfu in 200**μl (ca 30,000 X LD50)
 - IP (opposite side of pump)
- Drug delivery: Alzet pumps (IP)(25-50 mM in PEG 400)
- Number of mice per group: n=10
 - 2 controls (no vehicle, vehicle)
- Timing: Let animals recover for 2 days before infection
 - Day -2: Implant Alzet osmotic pump
 - Day 0: EBOV Infection
- Endpoint: Survival + weight
 - monitor survival daily until day 8
 - monitor weight daily until day 14
 - duration of study: 30 days

Ebola mouse model studies



Pump: 200ul @ 1.0ul/hr for 7 days

Infection: 2 days post implant

Data: Weight loss, time of death

<u>Inoculum:</u> 3,000x LD₅₀, 100pfu

Pump: 200ul @ 0.5ul/hr for 14 days

Infection: 4 days post implant

Data: Weight loss, time of death, and viremia

Ongoing activities (Apath)

- Continue optimization of secondary sulfonamides
- Initiated optimization of 4-aminoquinolines
- Continue selection of compounds for mouse efficacy
- Assess spectrum of activity (other viruses, etc.)

Ongoing activities (USAMRIID)

- Other in vitro assays
 - Viral assays (plaque assays, RT-PCR, FACS)
 - Other cell lines (primary monocytes)
 - Other Ebola strains
 - Marburg virus
- Other animal models
 - Guinea pig
 - NHP

Ebola animal models

	Primates	Guinea pigs	Mice
Species/strain	monkeys,	strain 2, 13	inbred (BALB/c,
	baboons	outbred	C57BL/6) outbred (CD-1)
Route	s.c., i.m., i.p. aerosol	s.c., i.m., i.p. aerosol	i.p.
Lethality	100%	100%	100%
M. T. D.	6-10 days	8-11 days	5-8 days
Target organ	liver, spleen (wide-spread infection)	liver, spleen (wide-spread infection	liver, spleen (wide-spread infection)

Summary

- Subgenomic replication represents a useful cellbased screening tool for identifying inhibitors of viruses (particularly BSL3 and 4 viruses).
- A number of lead candidates have been identified.
- Novel sulfonamide lead compounds have been identified
- Mouse efficacy studies ongoing

Acknowledgements

NIAID

- R43AI052917-01
- R44AI052917-02
- R01 AI066502-01 (Bioshield)
- MRCE Development award

DOD

- DOD Contract W81XWH-05-C-0129
- USAMRIID CRADA
 - Jason Paragas, Craig Koehler, Aura Garrison, Gene Olinger
- Tripos, Inc.
 - Mike Lawless, Julia Foster
- Stephan Becker (University of Marburg)
- Apath
 - Julie Dyall, Ben Buscher, Bob Roth, Urszula Slomszynska, Andy O'Guin, Gale Starkey, Jennifer Balsarotti